Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.651
Filtrar
1.
Curr Biol ; 34(7): 1426-1437.e6, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38484734

RESUMO

7An efficient immune system must provide protection against a broad range of pathogens without causing excessive collateral tissue damage. While immune effectors have been well characterized, we know less about the resilience mechanisms protecting the host from its own immune response. Antimicrobial peptides (AMPs) are small, cationic peptides that contribute to innate defenses by targeting negatively charged membranes of microbes. While protective against pathogens, AMPs can be cytotoxic to host cells. Here, we reveal that a family of stress-induced proteins, the Turandots, protect the Drosophila respiratory system from AMPs, increasing resilience to stress. Flies lacking Turandot genes are susceptible to environmental stresses due to AMP-induced tracheal apoptosis. Turandot proteins bind to host cell membranes and mask negatively charged phospholipids, protecting them from cationic pore-forming AMPs. Collectively, these data demonstrate that Turandot stress proteins mitigate AMP cytotoxicity to host tissues and therefore improve their efficacy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Imunidade Inata/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Parasite Immunol ; 46(2): e13022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384176

RESUMO

Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Galinhas/parasitologia , Peptídeos Catiônicos Antimicrobianos/genética , Receptores Toll-Like/genética , Coccidiose/parasitologia , Ceco/parasitologia
3.
Appl Microbiol Biotechnol ; 108(1): 176, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277014

RESUMO

The demand for massive quantities of therapeutic active antimicrobial peptides (AMPs) is high due to their potential as alternatives to antibiotics. However, each antimicrobial peptide has unique properties, necessitating distinct synthesis and purification strategies for their large-scale production. In this study, we bio-synthesized and purified a functional enhanced variant of the AMP epinecidin-1, known as Ac-Var-1 (acid-cleavable variant-1). To generate the active peptide, we cloned the gene for Ac-Var-1 with acid-cleavable site (aspartic acid-proline) into the pET-32a expression vector, purified the fusion protein by His tag enrichment chromatography, and performed acid cleavage to release the active Ac-Var-1 peptide. After acid cleavage, the active Ac-Var-1 was purified and characterized by SDS-PAGE and mass spectrometry. The results from both techniques provided confirmation of the intactness of the purified Ac-Var-1. The Ac-Var-1 inhibited the growth of pathogenic Escherichia coli and Staphylococcus aureus. KEY POINTS : • Epinecidin-1 is a well-known antimicrobial peptide having multipotential bioactivities. • Epinecidin-1 variant is developed via the site-directed mutagenesis method to improve its structural stability and bioactivity. • AC-Var-1 development is an economical and easy method to remove peptide from tag protein.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Estafilocócicas , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Biotechnol Adv ; 71: 108296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38042311

RESUMO

Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Plantas/genética , Anti-Infecciosos/química , Biotecnologia
5.
FEBS J ; 291(3): 547-565, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37945538

RESUMO

The existence of encrypted fragments with antimicrobial activity in human proteins has been thoroughly demonstrated in the literature. Recently, algorithms for the large-scale identification of these segments in whole proteomes were developed, and the pervasiveness of this phenomenon was stated. These algorithms typically mine encrypted cationic and amphiphilic segments of proteins, which, when synthesized as individual polypeptide sequences, exert antimicrobial activity by membrane disruption. In the present report, the human reference proteome was submitted to the software kamal for the uncovering of protein segments that correspond to putative intragenic antimicrobial peptides (IAPs). The assessment of the identity of these segments, frequency, functional classes of parent proteins, structural relevance, and evolutionary conservation of amino acid residues within their corresponding proteins was conducted in silico. Additionally, the antimicrobial and anticancer activity of six selected synthetic peptides was evaluated. Our results indicate that cationic and amphiphilic segments can be found in 2% of all human proteins, but are more common in transmembrane and peripheral membrane proteins. These segments are surface-exposed basic patches whose amino acid residues present similar conservation scores to other residues with similar solvent accessibility. Moreover, the antimicrobial and anticancer activity of the synthetic putative IAP sequences was irrespective to whether these are associated to membranes in the cellular setting. Our study discusses these findings in light of the current understanding of encrypted peptide sequences, offering some insights into the relevance of these segments to the organism in the context of their harboring proteins or as separate polypeptide sequences.


Assuntos
Anti-Infecciosos , Proteoma , Humanos , Proteoma/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Aminoácidos
6.
Microb Ecol ; 87(1): 8, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036921

RESUMO

Changes in the structure and function of the microbiota are associated with various human diseases. These microbial changes can be mediated by antimicrobial peptides (AMPs), small peptides produced by the host and their microbiota, which play a crucial role in host-bacteria co-evolution. Thus, by studying AMPs produced by the microbiota (microbial AMPs), we can better understand the interactions between host and bacteria in microbiome homeostasis. Additionally, microbial AMPs are a new source of compounds against pathogenic and multi-resistant bacteria. Further, the growing accessibility to metagenomic and metatranscriptomic datasets presents an opportunity to discover new microbial AMPs. This review examines the structural properties of microbiota-derived AMPs, their molecular action mechanisms, genomic organization, and strategies for their identification in any microbiome data as well as experimental testing. Overall, we provided a comprehensive overview of this important topic from the microbial perspective.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Microbiota , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Bactérias/genética , Microbiota/genética , Antibacterianos
7.
Commun Biol ; 6(1): 1067, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857855

RESUMO

The physicochemical and structural properties of antimicrobial peptides (AMPs) determine their mechanism of action and biological function. However, the development of AMPs as therapeutic drugs has been traditionally limited by their toxicity for human cells. Tuning the physicochemical properties of such molecules may abolish toxicity and yield synthetic molecules displaying optimal safety profiles and enhanced antimicrobial activity. Here, natural peptides were modified to improve their activity by the hybridization of sequences from two different active peptide sequences. Hybrid AMPs (hAMPs) were generated by combining the amphipathic faces of the highly toxic peptide VmCT1, derived from scorpion venom, with parts of four other naturally occurring peptides having high antimicrobial activity and low toxicity against human cells. This strategy led to the design of seven synthetic bioactive variants, all of which preserved their structure and presented increased antimicrobial activity (3.1-128 µmol L-1). Five of the peptides (three being hAMPs) presented high antiplasmodial at 0.8 µmol L-1, and virtually no undesired toxic effects against red blood cells. In sum, we demonstrate that peptide hybridization is an effective strategy for redirecting biological activity to generate novel bioactive molecules with desired properties.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Sequência de Aminoácidos
8.
Microb Cell Fact ; 22(1): 164, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635252

RESUMO

BACKGROUND: Recently, researchers have focused on the search for alternatives to conventional antibiotics. Antimicrobial peptides are small bioactive peptides that regulate immune activation and have antibacterial activity with a reduced risk of bacterial resistance. Porcine myeloid antibacterial peptide 37 (PMAP-37) is a small-molecule peptide with broad-spectrum antibacterial activity isolated from pig bone marrow, and PMAP-37(F34-R) is its analogue. In this study, PMAP-37(F34-R) was recombinantly expressed in Pichia pastoris, and the recombinant peptide was further investigated for its antibacterial properties, mechanism and preservative in plums. RESULTS: To obtain a Pichia pastoris strain expressing PMAP-37(F34-R), we constructed a plasmid expressing recombinant PMAP-37(F34-R) (pPICZα-PMAP-37(F34-R)-A) and introduced it into Pichia pastoris. Finally, we obtained a highly active recombinant peptide, PMAP-37(F34-R), which inhibited the activity of both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration is 0.12-0.24 µg/mL, and it can destroy the integrity of the cell membrane, leading to cell lysis. It has good stability and is not easily affected by the external environment. Hemolysis experiments showed that 0.06 µg/mL-0.36 µg/mL PMAP-37(F34-R) had lower hemolysis ability to mammalian cells, and the hemolysis rate was below 1.5%. Additionally, 0.36 µg/mL PMAP-37(F34-R) showed a good preservative effect in plums. The decay and weight loss rates of the treated samples were significantly lower than those of the control group, and the respiratory intensity of the fruit was delayed in the experimental group. CONCLUSIONS: In this study, we constructed a recombinant Pichia pastoris strain, which is a promising candidate for extending the shelf life of fruits and has potential applications in the development of new preservatives.


Assuntos
Prunus domestica , Animais , Suínos , Antibacterianos/farmacologia , Hemólise , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias , Mamíferos
9.
Proc Natl Acad Sci U S A ; 120(36): e2305649120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639605

RESUMO

Resilience to short-term perturbations, like inflammation, is a fundamental feature of microbiota, yet the underlying mechanisms of microbiota resilience are incompletely understood. Here, we show that Lactiplantibacillus plantarum, a major Drosophila commensal, stably colonizes the fruit fly gut during infection and is resistant to Drosophila antimicrobial peptides (AMPs). By transposon screening, we identified L. plantarum mutants sensitive to AMPs. These mutants were impaired in peptidoglycan O-acetylation or teichoic acid D-alanylation, resulting in increased negative cell surface charge and higher affinity to cationic AMPs. AMP-sensitive mutants were cleared from the gut after infection and aging-induced gut inflammation in wild-type, but not in AMP-deficient flies, suggesting that resistance to host AMPs is essential for commensal resilience in an inflamed gut environment. Thus, our work reveals that in addition to the host immune tolerance to the microbiota, commensal-encoded resilience mechanisms are necessary to maintain the stable association between host and microbiota during inflammation.


Assuntos
Peptídeos Antimicrobianos , Drosophila , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Envelhecimento , Inflamação
10.
Appl Microbiol Biotechnol ; 107(18): 5569-5593, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450018

RESUMO

Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.


Assuntos
Anti-Infecciosos , Bacillus , Bacillus/genética , Bacillus/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia
11.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511418

RESUMO

Antimicrobial peptides (AMPs) are promising alternatives to existing treatments for multidrug-resistant bacteria-infected wounds. Therefore, the effect of protegrin-1 (PG1), a potent porcine AMP with broad-spectrum activity, on wound healing was evaluated. PG1-overexpressing transgenic mice were used as an in vivo model to evaluate its healing efficiency against Staphylococcus aureus-infected (106 colony forming units) wounds. We analyzed the wounds under four specific conditions in the presence or absence of antibiotic treatment. We observed the resolution of bacterial infection and formation of neo-epithelium in S. aureus-infected wounds of the mice, even without antibiotic treatment, whereas all wild-type mice with bacterial infection died within 8 to 10 days due to uncontrolled bacterial proliferation. Interestingly, the wound area on day 7 was smaller (p < 0.01) in PG1 transgenic mice than that in the other groups, including antibiotic-treated mice, suggesting that PG1 exerts biological effects other than bactericidal effect. Additionally, we observed that the treatment of primary epidermal keratinocytes with recombinant PG1 enhanced cell migration in in vitro scratch and cell migration assays. This study contributes to the understanding of broad-spectrum endogenous cathelicidins with potent antimicrobial activities, such as PG1, on wound healing. Furthermore, our findings suggest that PG1 is a potent therapeutic candidate for wound healing.


Assuntos
Infecções Estafilocócicas , Infecção dos Ferimentos , Suínos , Camundongos , Animais , Catelicidinas/genética , Catelicidinas/farmacologia , Staphylococcus aureus , Camundongos Transgênicos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
12.
Environ Sci Technol ; 57(20): 7698-7708, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37161271

RESUMO

Antimicrobial peptides are a promising new class of antimicrobials that could address the antibiotic resistance crisis, which poses a major threat to human health. These peptides are present in all kingdoms of life, but especially in microorganisms, having multiple origins in diverse taxa. To date, there has been no global study on the diversity of antimicrobial peptides, the hosts in which these occur, and the potential for resistance to these agents. Here, we investigated the diversity and number of antimicrobial peptides in four main habitats (aquatic, terrestrial, human, and engineered) by analyzing 52,515 metagenome-assembled genomes. The number of antimicrobial peptides was higher in the human gut microbiome than in other habitats, and most hosts of antimicrobial peptides were habitat-specific. The relative abundance of genes that confer resistance to antimicrobial peptides varied between habitats and was generally low, except for the built environment and on human skin. The horizontal transfer of potential resistance genes among these habitats was probably constrained by ecological barriers. We systematically quantified the risk of each resistance determinant to human health and found that nearly half of them pose a threat, especially those that confer resistance to multiple AMPs and polymyxin B. Our results help identify the biosynthetic potential of antimicrobial peptides in the global microbiome, further identifying peptides with a low risk of developing resistance.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Antibacterianos/farmacologia
13.
Genes (Basel) ; 14(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37107545

RESUMO

Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites.


Assuntos
Anti-Infecciosos , Mytilus edulis , Mytilus , Animais , Mytilus/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/química , Mytilus edulis/genética , Genoma
14.
Genes (Basel) ; 14(4)2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-37107683

RESUMO

Host defense peptides (HDPs) are components of plant defensive barriers that resist microbial infection. Members of the Snakin/GASA protein family in plants have functions of regulating plant growth, defense, and bacteriostasis. Most mangrove plants grow in coastal zones. In order to survive in harsh environments, mangrove plants have evolved complex adaptations against microbes. In this study, Snakin/GASA family members were identified and analyzed in the genomes of three mangrove species. Twenty-seven, thirteen, and nine candidate Snakin/GASA family members were found in Avicennia marina, Kandelia obovata, and Aegiceras corniculatum, respectively. These Snakin/GASA family members were identified and categorized into three subfamilies via phylogenetic analysis. The genes coding for the Snakin/GASA family members were unevenly distributed on chromosomes. Collinearity and conservative motif analyses showed that the Snakin/GASA family members in K. obovata and A. corniculatum underwent multiple gene duplication events. Snakin/GASA family member expression in normal leaves and leaves infected with pathogenic microorganisms of the three mangrove species was verified using real-time quantitative polymerase chain reaction. The expression of KoGASA3 and 4, AcGASA5 and 10, and AmGASA1, 4, 5, 15, 18, and 23 increased after microbial infection. This study provides a research basis for the verification of HDPs from mangrove plants and suggests directions for the development and utilization of marine biological antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Filogenia , Plantas/metabolismo , Biologia Computacional
15.
Sci Rep ; 13(1): 5508, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015983

RESUMO

The lack of cost-effective methods for producing antimicrobial peptides has made it impossible to use their high potential as a new and powerful class of antimicrobial agents. In recent years, extensive research has been conducted to decrease the cost of recombinant proteins production through microorganisms, transgenic animals, and plants. Well-known genetic and physiological characteristics, short-term proliferation, and ease of manipulation make E. coli expression system a valuable host for recombinant proteins production. Expression in periplasmic space is recommended to reduce the inherently destructive behavior of antimicrobial peptides against the expressing microorganism and to decline susceptibility to proteolytic degradation. In this study, a pET-based expression system was used to express buforin I at E. coli periplasmic space, and its antimicrobial, hemolytic, and cell toxicity activities as well as structural stability were evaluated. The hemolysis activity and cytotoxicity of His-tagged buforin I were negligible and its antimicrobial activity did not show a significant difference compared to synthetic buforin I. In addition, in silico investigating of stability of native and His-tagged buforin I showed that RMSF, RMSD and Rg curves had followed a similar trend during 150 ns simulation. Furthermore, evaluating the modelled structures, FTIR and X-ray methods of both peptides indicated an insignificant structural difference. It was concluded that the recombinant buforin I could be a viable alternative to some currently used antibiotics by successfully expressing it in the pET-based expression system.


Assuntos
Anti-Infecciosos , Escherichia coli , Animais , Escherichia coli/metabolismo , Periplasma/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Tomografia Computadorizada por Raios X , Anti-Infecciosos/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
16.
Front Immunol ; 14: 1140627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063911

RESUMO

Introduction: Upon infection, insect hosts simultaneously express a cocktail of antimicrobial peptides (AMPs) which can impede pathogen colonization and increase host fitness. It has been proposed that such a cocktail might be adaptive if the effects of co-expressed AMPs are greater than the sum of individual activities. This could potentially prevent the evolution of bacterial resistance. However, in vivo studies on AMPs in combination are scarce. Attacins are one of the relatively large AMP families, which show anti-Gram-negative activity in vitro. Material and methods: Here, we used RNA interference (RNAi) to silence three members of the Attacin family genes in the mealworm beetle, Tenebrio molitor: (TmAttacin1a (TmAtt1a), TmAttacin1b (TmAtt1b), and TmAttacin2 (TmAtt2) both individually and in combination. We then infected T. molitor with the Gram negative entomopathogen Pseudomonas entomophila. Results: We found that survival of the beetles was only affected by the knockdown of TmAttacin1b, TmAttacin2 and the knockdown of all three Attacins together. Triple knockdown, rather than individual or double knockdowns of AMPs, changes the temporal dynamics of their efficiency in controlling the colonization of P. entomophila in the insect body. Discussion: More precisely, AMP gene expression influences P. entomophila load early in the infection process, resulting in differences in host survival. Our results highlight the importance of studying AMP-interactions in vivo.


Assuntos
Besouros , Tenebrio , Animais , Tenebrio/genética , Tenebrio/microbiologia , Carga Bacteriana , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Antimicrobianos
17.
Nutrients ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36986109

RESUMO

Vitamin D is known to modulate human immune responses, and vitamin D deficiency is associated with increased susceptibility to infection. However, what constitutes sufficient levels or whether vitamin D is useful as an adjuvant therapeutic is debated, much in part because of inadequate elucidation of mechanisms underlying vitamin D's immune modulatory function. Cathelicidin antimicrobial peptide (CAMP) has potent broad-spectrum activity, and the CAMP gene is regulated in human innate immune cells by active 1,25(OH)2D3, a product of hydroxylation of inactive 25(OH)D3 by CYP27B1-hydroxylase. We developed a CRISPR/Cas9-edited human monocyte-macrophage cell line containing the mCherry fluorescent reporter gene at the 3' end of the endogenous CAMP gene. The High Throughput CAMP Assay (HiTCA) developed here is a novel tool for evaluating CAMP expression in a stable cell line that is scalable for a high-throughput workflow. Application of HiTCA to serum samples from a small number of human donors (n = 10) showed individual differences in CAMP induction that were not fully accounted for by the serum vitamin D metabolite status of the host. As such, HiTCA may be a useful tool that can advance our understanding of the human vitamin D-dependent antimicrobial response, which is being increasingly appreciated for its complexity.


Assuntos
Anti-Infecciosos , Vitamina D , Humanos , Vitamina D/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Catelicidinas/genética , Vitaminas , Anti-Infecciosos/farmacologia , Receptores de Calcitriol/genética
18.
Fish Shellfish Immunol ; 135: 108645, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870429

RESUMO

As one of the key components of innate immune system, piscidins are likely to play pivotal role in the first defense line in fish. Piscidins own multiple resistance activity. A novel piscidin 5-like type 4 was excavated from Larimichthys crocea (termed Lc-P5L4) liver transcriptome immuned by Cryptocaryon irritans, and upregulated at 7 days post infection when secondary bacterial infection occurred. In the study, we characterized the antibacterial activity of Lc-P5L4. The liquid growth inhibition assay detected the recombinant Lc-P5L4 (rLc-P5L) had potent antibacterial activity to Photobacterium damselae. Scanning electron microscope (SEM) observed the cell surface of P. damselae collapsed to form pit, and membrane of some bacteria ruptured after co-incubation with rLc-P5L. Further, transmission electron microscope (TEM) was also employed to observe the intracellular microstructural damage, rLc-P5L4 caused cytoplasm contraction, pores formation and contents leakage. After knowing about its antibacterial effects, the preliminary antibacterial mechanism was also explored, western blot analysis showed rLc-P5L4 could bind to P. damselae through targeting to LPS. Agarose gel eletrophoresis analysis further showed rLc-P5L4 could also penetrate into cells and brought about genome DNA degradation. Therefore, rLc-P5L4 was of potential being a candidate to explore new antimicrobial drug or additive agent, especially to P. damselae.


Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Peixes/química
19.
BMC Vet Res ; 19(1): 47, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765333

RESUMO

BACKGROUND: The liver-expressed antimicrobial peptide 2 (LEAP2) is essential in host immunity against harmful pathogens and is only known to act as an extracellular modulator to regulate embryonic development in amphibians. However, there is a dearth of information on the antimicrobial function of amphibian LEAP2. Hence, a LEAP2 homologue from Leptobrachium liui was identified, characterized, and chemically synthesized, and its antibacterial activities and mechanisms were determined. RESULTS: In this study, LEAP2 gene (Ll-LEAP2) cDNA was cloned and sequenced from the Chong'an Moustache Toad (Leptobrachium liui). The predicted amino acid sequence of Ll-LEAP2 comprises a signal peptide, a mature peptide, and a prodomain. From sequence analysis, it was revealed that Ll-LEAP2 belongs to the cluster of amphibian LEAP2 and displays high similarity to the Tropical Clawed Frog (Xenopus tropicalis)'s LEAP2. Our study revealed that LEAP2 protein was found in different tissues, with the highest concentration in the kidney and liver of L. liui; and Ll-LEAP2 mRNA transcripts were expressed in various tissues with the kidney having the highest mRNA expression level. As a result of Aeromonas hydrophila infection, Ll-LEAP2 underwent a noticeable up-regulation in the skin while it was down-regulated in the intestines. The chemically synthesized Ll-LEAP2 mature peptide was selective in its antimicrobial activity against several in vitro bacteria including both gram-positive and negative bacteria. Additionally, Ll-LEAP2 can kill specific bacteria by disrupting bacterial membrane and hydrolyzing bacterial gDNA. CONCLUSIONS: This study is the first report on the antibacterial activity and mechanism of amphibian LEAP2. With more to uncover, the immunomodulatory functions and wound-healing activities of Ll-LEAP2 holds great potential for future research.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Sequência de Bases , RNA Mensageiro
20.
Amino Acids ; 55(1): 1-17, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35864258

RESUMO

The emergence of antimicrobial peptides (AMPs) as a potential alternative to conventional antibiotics has led to the development of efficient computational methods for predicting AMPs. Among all organisms, the presence of multiple genes encoding AMPs in plants demands the development of a plant-based prediction tool. To this end, we developed models based on multiple peptide features like amino acid composition, dipeptide composition, and physicochemical attributes for predicting plant-derived AMPs. The selected compositional models are integrated into a web server termed PTPAMP. The designed web server is capable of classifying a query peptide sequence into four functional activities, i.e., antimicrobial (AMP), antibacterial (ABP), antifungal (AFP), and antiviral (AVP). Our models achieved an average area under the curve of 0.95, 0.91, 0.85, and 0.88 for AMP, ABP, AFP, and AVP, respectively, on benchmark datasets, which were ~ 6.75% higher than the state-of-the-art methods. Moreover, our analysis indicates the abundance of cysteine residues in plant-derived AMPs and the distribution of other residues like G, S, K, and R, which differ as per the peptide structural family. Finally, we have developed a user-friendly web server, available at the URL: http://www.nipgr.ac.in/PTPAMP/ . We expect the substantial input of this predictor for high-throughput identification of plant-derived AMPs followed by additional insights into their functions.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , alfa-Fetoproteínas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antivirais/química , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...